If it's not what You are looking for type in the equation solver your own equation and let us solve it.
6w^2+10w=0
a = 6; b = 10; c = 0;
Δ = b2-4ac
Δ = 102-4·6·0
Δ = 100
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$w_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$w_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{100}=10$$w_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(10)-10}{2*6}=\frac{-20}{12} =-1+2/3 $$w_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(10)+10}{2*6}=\frac{0}{12} =0 $
| 5=2x=3+x-4-3x | | 52=w/10+46 | | 6x+18=114 | | x^+3x-5=3 | | 8(x-2)+5x= | | -4=2-x/2 | | 12(p-2.1/3)=-8 | | 8s/6=32 | | f/9+65=73 | | (x-5)/3=6 | | -2(-3x-3)-2x=45 | | 40-x=3x-60 | | 48x+265=533 | | 8f-6=58 | | x+-1+10=15 | | x/2.5-7=-82 | | m–2=12. | | 19=3+4t | | 3y-2+3y-5=2y+10 | | 16=c/4+13 | | (x/12)-2=-3 | | (3x+53)+(7x-55)=180 | | 2+x-4=10 | | y+-10=5 | | (x/12)-9=-2 | | 2’+7x=5x+15 | | -4p=-6 | | 10=5x6+x | | 3/b+16=4/88 | | -4(6+n)+3=-17 | | 4=2y=6 | | -6x-14=-56 |